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We consider an assembly of 
atoms, with a certain number 
of bonds between them that 
impose constraints on the 

relative positions of the atoms. If there are 
few bonds, the network is easily deformed: it 
is in the “floppy,” or underconstrained, phase. 
If there are many bonds, any deformation 
requires stretching or bending bonds: this is 
the “rigid,” or overconstrained, phase. In be-
tween these cases lies the rigidity transition. 
Rigidity theory, developed by Phillips [1] and 
Thorpe [2], has proved very successful during 
the last two decades in describing a variety 
of covalent glasses: signatures of the rigidity 
transition have been found by varying the 
composition of the glass. More recently, in 
a series of experiments, Boolchand et al. [3] 
showed that the phenomenology can be more 
complex than expected around the transi-
tion: they identified an intermediate phase 
between the floppy and rigid ones, and thus 

two transitions instead of one.  
Figure 1 provides such an example for the 
SixSe1-x compound. This phase diagram with 
two transitions has been found now in  
numerous different compounds.

Thorpe et al. [4] attributed this behavior 
to the possibility of self-organization of the 
network; that is, the bonds are not distributed 
randomly, and the network can adapt itself 
to lower the stress due to overconstrained 
regions. Micoulaut and Phillips then ana-
lyzed the local and medium range structure 
of such self-organizing networks by grow-
ing clusters [5]. Our aim here is to provide a 
solvable minimal model for the intermedi-
ate phase and the two-phase transitions; the 
only ingredients are a network undergoing a 
rigidity transition, and the adaptability of the 
network, to avoid stress. We consider N atoms 
of two different types: N1 with coordination 
1 and N3 with coordination 3. To keep the 
model solvable, we consider that these atoms 
are randomly bonded together (see Fig. 2). 
Without the adaptability ingredient, this sys-
tem undergoes a standard rigidity transition, 
between a floppy and a rigid phase, when the 
fraction x3 = N3/N of 3-atoms is increased 
where N = N1 + N3.

We now introduce the adaptability as follows. 
When a new bond is added to the network, it 
can reduce the number of degrees of free-
dom, or create redundancies (or both). In the 
presence of redundancies, some constraints 
cannot be fulfilled: this creates stress in the 

Figure 1— 
Plot of the irreversible 
part of the heat flow 
ΔHnr across the glass 
transition for SixSe1-x 
compounds, varying the 
Si concentration. ΔHnr 
almost vanishes in a 
composition window de-
fining the intermediate 
phase (experiments by 
Selvanathan et al. [3]).



network and costs some energy. Thus we 
introduce an energy for the system defined as 
the number of redundant constraints in the 
network: H = Nred. The network now tends to 
adapt itself to avoid creating too many redun-
dant constraints; however, this adaptation, 
pushing the network away from the com-
pletely random situation, costs entropy. A bal-
ance between the two effects is then achieved. 
To have a measure of how much the system 
adapts, or how far it is from the maximally 
random case, we introduce the parameter a, 
defined as the ratio of the number of bonds 
between two 1-atoms N11 and the number of 
bonds between two 1-atoms in the maximally 
random case N

11
* : a = N11/N11

* . Thus, any 
value of a different from one denotes some 
organization in the network. Analytical cal-
culations and Monte Carlo simulations now 
show three different phases, see Fig. 3.

Here we have augmented a standard rigid-
ity model with an additional ingredient: the 
possibility for the network to adapt, in order 
to avoid stress. We see that these very simple 
ingredients are already sufficient to produce 
an intermediate phase and the two-phase 
transitions, reproducing the experimental 
phase diagram. This suggests that, beyond the 
case of rigidity and its application to covalent 
glasses, this type of intermediate phase could 
be found in other contexts, like K- 
satisfiability and other combinatorial optimi-
zation problems in computer science [7].
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Figure 3— 
Rigidity transition 
with adaptability. 
Number of floppy 
modes and parameter 
a as a function of the 
composition. The lines 
are two analytical 
calculations, the 
solid line taking more 
accurately into
account the correlations 
in the network. Symbols 
are Monte Carlo results.
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Figure 2— 
Example of a  
network formed  
with 3-atoms (blue)  
and 1-atoms (red).
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